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M.A./M.Sc. (Previous)
Term End Examination, 2017-18

MATHEMATICS
Paper - II

Real Analysis and Measure Theory

Time : Three Hours] [Maximum Marks : 100
[Minimum Pass Marks : 36

Note : Answer any five questions. All questions carry
equal marks.

1. (a) Let f, a:[a,b] > R be a bounded
function and o be monotonically
increasing. If P* is a refinement of the
partition P of the interval [a, b], then

L(P, f,o) <L ((P* f,o) and

UP* f,a)<U, P, f, o)
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(2)

(b) Let F and G be differentiable function on

[a, b], F'=feR [a,b] and G'=geR
[a, b]. Then

2. (a) State and prove Riemann’s theorem on
rearrangement of series.

(b) Prove that the series :

1 1 1 1
I+—+——1+—+-—
2 3 4 5
3. (a) Let (X, d) be metric space f be a function

from X to R and fn: X—>R all ne N
the sequence of function {fn} converges
pointwise to f if and only if for each
x € X and for each € >0 3 a +ve integer
m such that n>m =

|/ (x) —f ()| < €.

(b) State and prove Mn Test for uniform
convergence of sequence.
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(3)

4. (a) Test for wuniform convergence and
continuity of the sum function of the
series of which

1
= —— <x <
fn (x) e for 0 <x <1
(b) Let o be monotonically increasing on
[a, b]. Suppose fme R () on [a, b] for
n=1,2, 3, .. and let fn — f uniformly
on [a, b]. Then fe R(a) on [a, b] and

b b
[ fdo= 1im [ fnda
n—>o0 ’
a a
5. (a) State and prove Weierstrass’s
approximation theorem.

(b) Show that the power series
1+2x+3x2+4x3+ ... has radius of
convergence equal to one.

6. (a) State and prove Abel’s theorem on power
series.

(b) A linear operator A4 on a finite
dimensional vector space X is one to one
if and only if the range of 4 is all of X
that is iff 4 is onto.

7. (a) State and prove Taylor’s theorem.

(b) Prove that a Borel measurable set is
Lebesgue measurable.
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(4)

If £, and E, are non-measurable sets, then

prove that

m(E\—E,) = m(E))-m(E,)

where E; D E, and m (E,) < oo

8.

9. (a)
(b)

10. (@)
(b)

State and prove Lebesgue bounded
convergence theorem.

Evaluate the Lebesgue integral of
function f: [0, 1] > R by

— if 0<x<l1

3
=12

0 if x=0

and show that f is Lebsesgue integrable
on [0, 1].

Let . gL [a, b]. Then f+ g €L’ [a, b].

State and prove Minknowski’s inequality.

226 BSP_(4)



